Ja n 20 09 Brody curves omitting hyperplanes

نویسنده

  • Alexandre Eremenko
چکیده

A Brody curve, a.k.a. normal curve, is a holomorphic map f from the complex line C to the complex projective space P such that the family of its translations {z 7→ f(z + a) : a ∈ C} is normal. We prove that Brody curves omitting n hyperplanes in general position have growth order at most one, normal type. This generalizes a result of Clunie and Hayman who proved it for n =

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brody curves omitting hyperplanes

A Brody curve, a.k.a. normal curve, is a holomorphic map f from the complex line C to the complex projective space P such that the family of its translations {z 7→ f(z + a) : a ∈ C} is normal. We prove that Brody curves omitting n hyperplanes in general position have growth order at most one, normal type. This generalizes a result of Clunie and Hayman who proved it for n =

متن کامل

Julia directions for holomorphic curves

A theorem of Picard type is proved for entire holomorphic mappings into projective varieties. This theorem has local nature in the sense that the existence of Julia directions can be proved under natural additional assumptions. An example is given which shows that Borel’s theorem on holomorphic curves omitting hyperplanes has no such local counterpart. Let P be complex projective space of dimen...

متن کامل

Non-archimedean Hyperbolicity

A complex manifold X is said to be hyperbolic (in the sense of Brody) if every analytic map from the complex plane C to X is constant. From Picard’s “little” theorem, an entire function missing more than two values must be constant. It is equivalent to say that P \ {0, 1,∞} is hyperbolic. Picard’s theorem also show that a Riemann surface of genus one omitting one point and Riemann surfaces of g...

متن کامل

Generators of function fields of the modular curves X1(5) and X1(6)

We show that the modular functions j1,5 and j1,6 generate function fields of the modular curves X1(N) (N = 5, 6, respectively) and find some number-theoretic properties of these modular functions.

متن کامل

ar X iv : 0 90 1 . 18 06 v 1 [ m at h . A G ] 1 3 Ja n 20 09 GREENBERG APPROXIMATION AND THE GEOMETRY OF ARC SPACES

We study the differential properties of generalized arc schemes and geometric versions of Kolchin’s Irreducibility Theorem over arbitrary base fields. As an intermediate step, we prove an approximation result for arcs by algebraic curves.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009